Abstract

The ionosphere plays a crucial role in space weather that affects satellite navigation as the ionospheric delay is one of the major errors in GNSS. On the other hand, GNSS observations are widely used to determine the amount of ionospheric total electron content (TEC). An important aspect in the electron content estimation at regional and global scale is adopting the appropriate interpolation strategy. In this paper we propose and validate a new method for regional TEC modeling based on least squares collocation (LSC) with noise variance estimation. This method allows for providing accurate TEC maps with high spatial and temporal resolution. Such maps may be used to support precise GNSS positioning and navigation, e.g. in RTK mode and also in the ionosphere studies. To test applicability of new TEC maps to positioning, double-difference ionospheric corrections were derived from the maps and their accuracy was analyzed. In addition, the corrections were applied to GNSS positioning and validated in ambiguity resolution domain. The tests were carried out during a strong ionospheric storm when the ionosphere is particularly difficult to model. The performance of the new approach was compared to IGS and UPC global, and CODE regional TEC maps. The results showed an advantage of our solution with resulting accuracy of the relative ionospheric corrections usually better than 10 cm, even during the ionospheric disturbances. This proves suitability of our regional TEC maps for, e.g. supporting fast ambiguity resolution in kinematic GNSS positioning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.