Abstract

Abstract In this paper, the detailed mechanism of isopentanol was simplified by DRGEP, generation rate analysis, reaction path optimisation and sensitivity analysis, and a comprehensive simplified mechanism of isopentanol/gasoline alternative fuels was obtained. isopentanol/gasoline characterised fuels with different blending ratios were investigated, and the results showed that blending of isopentanol promoted the autoignition of gasoline. It was found that blending isopentanol does not significantly affect the low-temperature reaction path of alkanes, but increases the reaction path flux from toluene to benzene. During combustion of isopentanol/gasoline alternative fuels, the isopentanol component exhibits a unique two-stage combustion phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call