Abstract
The great challenge facing additive manufacturing is that the available high-performance 3D printing materials can hardly keep up with the rapid development of new additive manufacturing technology. Then, the commercial resins available in the market have some problems, such as poor thermal stability, insufficient light-curing degree, and large shrinkage after curing, which need to be solved urgently. This study reports a photocurable polyimide ink for digital light processing (DLP) 3D printing to prepare controllable 3D structures with high thermal stability, low shrinkage, and excellent comprehensive properties. In this study, pyromellitic dianhydride and diaminodiphenyl ether, the Kapton polyimide with the highest performance synthesized so far, were selected as raw materials, and 2,2′-bis(3,4-dicarboxylic acid) hexafluoropropane dianhydride containing fluorine was introduced to modify the branched-chain structure. The polyimide was prepared by one-step imidization, and then the graft with photocurable double bonds and certain functions was grafted by reaction of glycidyl methacrylate with phenolic hydroxyl groups. In this work, the solubility of the synthesized oligomer polyimide in organic solvents was greatly increased by combining three methods, thereby allowing the formation of ink for photocuring 3D printing, and the ink can be stacked to form low-shrinkage polyimide with complex controllable shape. Polyimide printed by DLP can produce complex structures with good mechanical character and thermal stability and small shrinkage. Therefore, the polyimide prepared in this study is considered to be a resin of great commercial possibility. In addition, due to its properties, it has important development potential in some fields with high demand for thermal stability, such as high-temperature cooling valves, aerospace, and other fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.