Abstract

Digital light processing (DLP) is a projection-based vat photopolymerization 3D printing technique that attracts increasing attention due to its high resolution and accuracy. The projection-based layer-by-layer deposition in DLP uses precise light control to cure photopolymer resin quickly, providing a smooth surface finish due to the uniform layer curing process. Additionally, the extensive material selection in DLP 3D printing, notably including existing photopolymerizable materials, presents a significant advantage compared with other 3D printing techniques with limited material choices. Studies in DLP can be categorized into two main domains: material-level and system-level innovation. Regarding material-level innovations, the development of photocurable resins with tailored rheological, photocuring, mechanical, and functional properties is crucial for expanding the application prospects of DLP technology. In this review, we comprehensively review the state-of-the-art advancements in DLP 3D printing, focusing on material innovations centered on functional materials, particularly various smart materials for 4D printing, in addition to piezoelectric ceramics and their composites with their applications in DLP. Additionally, we discuss the development of recyclable DLP resins to promote sustainable manufacturing practices. The state-of-the-art system-level innovations are also delineated, including recent progress in multi-materials DLP, grayscale DLP, AI-assisted DLP, and other related developments. We also highlight the current challenges and propose potential directions for future development. Exciting areas such as the creation of photocurable materials with stimuli-responsive functionality, ceramic DLP, recyclable DLP, and AI-enhanced DLP are still in their nascent stages. By exploring concepts like AI-assisted DLP recycling technology, the integration of these aspects can unlock significant opportunities for applications driven by DLP technology. Through this review, we aim to stimulate further interest and encourage active collaborations in advancing DLP resin materials and systems, fostering innovations in this dynamic field.Graphical abstract

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.