Abstract
In this article, we have proposed a multi-attribute group decision making (MAGDM) with a new scenario or new condition named Chaotic MAGDM, in which not only the weights of the decision makers (DMs) and the weights of the decision attributes are considered, but also the familiarity of the DMs with the attributes are considered. Then we applied the weighted neutrosophic fuzzy soft rough set theory to Chaotic MAGDM and proposed a new algorithm for MAGDM. Moreover, we provide a case study to demonstrate the application of the algorithm. Our contributions to the literature are as follows: (1) familiarity is rubbed into MAGDM for the first time in the context of neutrosophic fuzzy soft rough sets; (2) a new MAGDM model based on neutrosophic fuzzy soft rough sets has been designed; (3) a sorting/ranking algorithm based on a neutrosophic fuzzy soft rough set is constructed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.