Abstract

In this work the bubble dynamics near a plate with circular hole is investigated. Numerical model for bubble dynamics is established based on incompressible potential theory. To overcome the numerical limitation of traditional boundary element method for the case with small initial distance between bubble and the edge of hole, the fluid domain is divided into two semi-infinite domains which are solved separately by fusing the bubble wall and the plate wall together, by which numerical simulation in various parameter ranges is implemented. The numerical results match the experimental ones well. Through the analysis of bubble dynamics near circular hole, we find that the influence of hole is opposite to that of solid wall. During the expansion phase, cavity-attraction effect is exerted on the bubble, while the bubble is pushed away during the collapsing phase. In some specific cases, opposite-jets are formed under the conjunction of solid plate and circular hole. Finally, the case where bubble wall and solid wall are fused together is analyzed to study the bubble dynamics after the separation of fluid domain and the influences of no-dimensional parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.