Abstract
This paper investigates the nonlinear interaction between a violent bubble and an air-backed plate with a circular hole. A numerical model is established using the incompressible potential theory coupled with the boundary integral method. A double-node technique is used to solve the overdetermined problem caused by the intersection between the solid wall and the free surface. A spark-generated bubble near the air-backed plate with a circular hole is observed experimentally using a high-speed camera. Our numerical results agree well with the experimental results. Both experimental and numerical results show that a multilevel spike emerges during the bubble’s expansion and contraction. Careful numerical simulation reveals that this special type of spike is caused by the discontinuity in the boundary condition. The influences of the hole size and depth on the bubble and spike dynamics are also analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.