Abstract

The in vitro biodegradation behavior of Mg17Al12 as a second phase in Mg–Al–Zn alloys was investigated via electrochemical measurement and immersion test. The Hank's solutions with neutral and acidic pH values were adopted as electrolytes to simulate the in vivo environment during normal and inflammatory response process. Furthermore, the local orbital density functional theory approach was employed to study the thermodynamical stability of Mg17Al12 phase. All the results proved the occurrence of pitting corrosion process with crackings for Mg17Al12 phase in Hank's solution, but with a much lower degradation rate compared with both AZ31 alloy and pure magnesium. Furthermore, a preliminary explanation on the biodegradation behaviors of Mg17Al12 phase was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.