Abstract

Thermodynamical stabilities of four conventional second phases as well as magnesium matrix in bioabsorbable magnesium alloys were investigated theoretically via computer calculation method. Model of individual phase and systems including phase and four water molecular (phase-4H2O) were established to simulate the in vitro and in vivo environment. Local orbital density functional theory approach was applied to calculate the total energy for the individual phase and phase-4H2O system. The results demonstrated that all the second phases possessed higher phase stability compared with magnesium matrix, but the phase stability was quite different for different types of second phases or second phase-4H2O systems. Furthermore, a schematic process of inflammation reaction caused by magnesium alloy implants was proposed for the further evaluation on biocompatibility of different second phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.