Abstract

The atomization mechanism of lubrication fluid in rolling bearings under high-speed airflow between the rings was investigated. A simulation model of gas–liquid two-phase flow in angular contact ball bearings was developed, and the jet lubrication process between the bearing rings was simulated using FLUENT computational fluid dynamics software (Ansys 19.2). The complex motion boundary conditions of the rolling elements were addressed through a layered approach. We can obtain more accurate boundary layer flow field changes and statistics of the diameter of oil particles in lubricating oil atomization, which lays the foundation for analyzing the law of influence on lubricating oil atomization. The results show that as the number of boundary layer layers increases, the influence of the boundary layer flow field on the lubricating oil is more obvious. The oil particle size is excessively flat, and the concentration of large particles of oil appears to decrease. As the speed increases, the amount of oil in the cavity decreases, but the oil droplets are also fragmented, which intensifies the atomization and reduces the particle diameter. This reduces the Sauter Mean Diameter (SMD), which is not conducive to the lubrication of the bearing. Under different injection pressures, when the injection pressure is large, it is beneficial to the lubrication of the bearing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.