Abstract

The process of using powdered activated carbon (PAC) in conjunction with ultrafiltration (UF) has been widely adopted for the treatment of various types of water and wastewater. However, during the application of this integrated PAC-UF process, PAC tends to adhere significantly to the surface of the UF membrane, which exacerbates membrane fouling. To tackle this issue, this study proposed an innovative water treatment approach that simultaneously integrated granular activated carbon (GAC) and PAC/biochar with UF. In this setup, PAC/biochar was intended to enhance water quality, while the fluidized GAC particles were aimed at reducing membrane fouling and the deposition of PAC/biochar on the membrane surface. We systematically analyzed the operational performance of the integrated systems concerning fouling formation, PAC/biochar attachment, effluent quality, and foulant components. The results indicate that both PAC and biochar effectively improved effluent quality in terms of chemical oxygen demand (COD) and hardness, although they significantly deposited on the membrane surface during operation. Notably, PAC was more prone to attach to the membrane than biochar, and the fouling in biochar-UF systems was primarily attributed to the attachment of organic foulants rather than biochar itself. By combining with GAC, up to 46.01% of membrane fouling and 96.11% of PAC/biochar attachment were mitigated due to the strong mechanical action of the fluidized GAC particles. Importantly, the inclusion of fluidized GAC did not significantly affect effluent quality. Consequently, the GAC-PAC/biochar systems proposed in this study demonstrated dual benefits of improving effluent quality and ensuring stable operation, thereby providing a viable solution for efficient and sustainable water treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.