Abstract

Mean radiant temperature has significant influence on indoor thermal comfort conditions. It has gained greater importance with the wider application of heating and cooling systems based on the use of large surfaces with a temperature slightly higher or lower than the indoor temperature (hot/cold floors or ceilings), because these systems operate through the radiant temperature control. The most used tool to measure radiant temperature, the globe thermometer, still has large margins of error, most of all due to the uncertainty in the evaluation of the convection heat exchanges between the globe surface and the indoor air. The feasibility of a device to measure mean radiant temperature in indoor condition, alternative to the globe-thermometer (obtained placing radiometric sensors (thermopiles) on the sides of different geometric regular solids), is proposed. The behavior has been investigated for different regular solids, such as the residual error and its dependence on walls average temperature, non-uniformity magnitude, orientation and position of the solid in the enclosure, room shape, non-uniformity temperature distribution. Icosahedron shape shows an excellent behavior, with errors lower than 0.1 K in all the examined conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.