Abstract

Fast and efficient computational electromagnetic simulation is a long-standing challenge. In this article, we propose a data-driven model to solve Poisson’s equation that leverages the learning capacity of deep learning techniques. A deep convolutional neural network (ConvNet) is trained to predict the electric potential with different excitations and permittivity distribution in 2-D and 3-D models. With a careful design of cost function and proper training data generated from finite-difference solvers, the proposed network enables a reliable simulation with significant speedup and fairly good accuracy. Numerical experiments show that the same ConvNet architecture is effective for both 2-D and 3-D models, and the average relative prediction error of the proposed ConvNet model is less than 3% in both 2-D and 3-D simulations with a significant reduction in computation time compared to the finite-difference solver. This article shows that deep neural networks have a good learning capacity for numerical simulations. This could help us to build some fast solvers for some computational electromagnetic problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call