Abstract
Turbulent natural convection in a tall differentially heated cavity of aspect ratio 5:1, filled with air under a Rayleigh number based on the height of 4.5·1010 is studied numerically. Three different situations have been analysed. In the first one, the cavity is filled with a transparent medium. In the second one, the cavity is filled with a semigrey participating mixture of air and water vapour. In the last one the cavity contains a grey participating gas. The turbulent flow is described by means of Large Eddy Simulation (LES) using symmetry-preserving discretizations. Simulations are compared with experimental data available in the literature and with Direct Numerical Simulations (DNS). Surface and gas radiation have been simulated using the Discrete Ordinates Method (DOM). The influence of radiation on fluid flow behaviour has been analysed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.