Abstract
This work presents the study of the thermodynamic properties of thermal electrons participating in scattering events. This is necessary because scattering with a thermal electron in presence of a laser field was not studied yet and it reduces the complexity of event measurement (differential cross-section). To study thermodynamic properties, the authors model the thermal Hamiltonian in presence of a laser field and used it to study the thermodynamic properties using the partition function. The study shows thermodynamic energy, around the target with distance at field amplitude 0.1 a.u. to 0.9 a.u. has destructive interference, above field amplitude 1 a.u. to 2.5 a.u. has superposition and at field amplitude 2.5 a.u. and 3 a.u. have coulomb potential like nature. Also, thermodynamic energy with temperature was found constant except at field amplitude 2.5 a.u. and at field amplitude 2.5 a.u. destructive interference at 10 °C and 21 °C. The thermodynamical potential at field amplitude 0.1 to 3.5 a.u. found constant and above field amplitude 3.5 a.u. increased linearly when studied with respect to temperature at 10 Å. The thermal Hamiltonian increase sharply when thermal electrons enter in 1–5 Å, slowly in 5–10 Å and beyond 10 Å constant, and the thermal Hamiltonian nature is like coulomb potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.