Abstract

The living skin equivalent is one of the more advanced clinical applications in the field of tissue engineering. It is a promising therapeutic option for burn victims and a strong potential for manifold in vitro experiments. However, researchers have encountered major drawbacks in the reconstruction of the dermal layer. Peripheral anchorage of the dermal equivalent component has been a valuable solution to many of these problems. In this work, we have carried out the mechanical analysis of skin equivalent models, based on this dermal anchoring technique, with a study of their biaxial tensile properties. Differences between models were related to the origin of collagen, either bovine or human, and on the culture techniques: immersion or at the air-liquid interface. The study was accomplished in vitro using 25.4-mm-diameter disk-shaped specimens with an indentation test. In appropriate wet condition, the specimens were punctured with a spherical tip at a quasi-static rate. We measured the load applied against the tip vs deflection up to the breaking point. Our results show that skin equivalents presented a typical exponential load-deflection relationship. All skin equivalents presented large extensibility up to 1.41 expressed in a ratio of deflection vs specimen's radius. The maximum tensile strength (0.871-1.169 Newton) and energy calculations (3.75-6.432 N.mm) was offered by living skin equivalent, made with human types I and III collagens, cultured at the air-liquid interface. In these conditions, our results suggest the tensile properties of living skin equivalents were enhanced due to the development of well stratified stratum corneum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.