Abstract

Tricobalt tetroxide (Co3O4) nanoparticles were synthesized by co-precipitation method. The structure, morphology, purity, real compositions, and functional groups of the prepared nanoparticles were determined by X-ray diffraction (XRD), transmission electron microscope (TEM), energy-dispersive X-ray (EDX) analysis, and Fourier transform infrared (FTIR) spectroscopy, respectively. The results confirm the formation of pure spinel structure of the Co3O4 nanoparticles with space group Fd3m and average spherical particle size of 58 nm. The optical properties were explored by ultraviolet–visible spectroscopy (UV–vis) and photoluminescence spectroscopy (PL). Two absorption peaks were aroused in ultraviolet and visible ranges accompanied by two band gap energies and an Urbach energy. Moreover, two emission peaks in agreement with the calculated band gap energies were observed in the PL spectrum. A weak ferromagnetic behavior was investigated by magnetic hysteresis (M-H) loop at room temperature. The electrical conductivity was measured in the temperature range 313–573 K. A normal semiconductor behavior was detected. The dielectric properties were studied under the variation of temperature and frequency. Then, the dielectric constant, dielectric loss, ac conductivity, relaxation process, and Nyquist plots were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call