Abstract

Nano crystalline Zn1-xSmxO, (0.00 ≤ x ≤ 0.10), were prepared by wet chemical coprecipitation method. The effect of samarium doping on the structural, morphological, optical, and magnetic properties of ZnO nanoparticles was examined by X-ray powder diffraction (XRD), Transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Ultraviolet-visible spectroscopy (UV) and M-H magnetic hysteresis. XRD analysis showed the hexagonal wurtzite structure of ZnO. The absence of Sm2O3as separate phase may be attributed to the complete dissolving of samarium in ZnO lattice. The lattice parameters (aandc) of Zn1-xSmxO were calculated and they fluctuated with the increase of Sm doping which indicated that the structure of ZnO was perturbed by the doping of Sm. The crystallite size was computed for all the samples using Debye-Scherrer’s method. The crystallite size decreased with the increase of Sm doping. TEM micrographs revealed that the size and the shape of the ZnO nanocomposites were changed by modifying the doping level of samarium. FTIR analysis spectrum confirmed the formation of ZnO phase and revealed a peak shift between pure and Sm-doped ZnO. The band gap energy and Urbach energy were calculated for Zn1-xSmxO, (0.00 ≤ x ≤ 0.10). The band energy gaps of pure and Sm doped ZnO samples are in the range 2.6–2.98 eV. M-H hysteresis inspection, at room temperature, showed that the pure ZnO exhibited a ferromagnetic behavior incorporated with diamagnetic and paramagnetic contributions. Ferromagnetic behavior was reduced for the doped samples withx=0.01andx=0.04. The samples withx=0.02and 0.06 ≤ x ≤ 0.10 tend to be superparamagnetic. The saturation magnetization (Ms), the coercivity (Hc), and the retentivity (Mr) were recorded for Zn1-xSmxO, (0.00 ≤ x ≤ 0.10).

Highlights

  • The unusual physical properties and broad range of applications of semiconductor nanoparticles or quantum dots (QDs) [1, 2], basically II-VI materials, have attracted great attention recently

  • All of the observed peaks harmonized with those of wurtzite hexagonal structure zinc oxide (ZnO) (JCPDS card number 36-1451, a = b = 3.249 Ǻ, c = 5.206 Ǻ) with the preferred orientation of (101) planes and no additional peaks appeared for secondary phases that may originate from Sm doping, revealing the good synthesis of ZnO : Sm nanoparticles

  • The results show that the band gap energy of Sm-doped ZnO nanoparticles with x = 0 decreased relative to pure ZnO; it increased to 2.98 eV for x = 0

Read more

Summary

Introduction

The unusual physical properties and broad range of applications of semiconductor nanoparticles or quantum dots (QDs) [1, 2], basically II-VI materials, have attracted great attention recently. ZnO semiconductor exhibits electronic properties as large exciton binding energy of 60 meV with direct band gap of 3.37 eV [5, 6]. It is nontoxic, cheap, biosafe, and biocompatible [7]. Zinc oxide is a transparent electro conductive material, ultraviolet absorber, and antibacterial agent Owing to their electrical, optical, mechanical, and magnetic properties resulting from quantum confinement effects, nanoparticles of ZnO are candidates of applications in piezoelectric transducers, transparent field-effect transistors, gas sensors, optical waveguides, transparent conductive films, ultraviolet nanolasers, varistors, photodetectors, solar cells, blue and ultraviolet (UV) optical devices, and bulk acoustic wave devices [8,9,10,11,12,13].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call