Abstract

A biomimetic Egeria-densa-like hybrid composite nanofiber membrane was fabricated to degrade organic pollutants in water, with PVDF nanofibers as stems to provide support, and ZnO nanowires as leaves to provide active sites. The Sm-doped ZnO nanowires@PVDF nanofiber membranes were characterized by FE-SEM, X-ray photoelectron spectroscopy, Fourier transform infrared, X-ray diffraction, and UV–vis diffuse reflectance spectrometer. Compared with the pure ZnO nanowires@PVDF nanofiber membrane, the Sm-doped membrane showed higher photocatalytic performance. The excellent photocatalytic activity was attributed to the increased specific surface area and the decreased bandgap of ZnO nanowires after Sm doping, which inhibited the recombination rate of electrons and holes and improved the absorption of visible light. We found that the superoxide free radicals (O2−) played a critical role in photocatalytic degradation. The Sm-doped ZnO nanowires@PVDF nanofiber membrane exhibited good stability after 5 cycles of RhB degradation. We believe such Sm-doped hybrid membrane can work as an effective photocatalyst for wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.