Abstract
The similarity of each scale model is verified based on the theory of similarity, deriving the similarity law of internal explosions in a single-layer spherical lattice shell structure via dimensional theory, calculated based on models with scaling coefficients of 1, 0.8, 0.6, 0.4, 0.2, and 0.1. The results show that the shock wave propagation characteristics, the distribution of the overpressure on the inner surface, the maximum dynamic response position, and the position at which the earliest explosion venting occurs are all similar to those of the original model. With the decrease of scaling coefficients, the overpressure peak value of the shock waves of each scale model, and the specific action time of the positive pressure zone, as well as specific impulse are increasingly deviated from the original model values; when the scaling coefficient is 0.1, the maximum relative error between the overpressure peak value at the measurement point and the specific action time of the positive pressure zone as well as the specific impulse and the original model value is 4.9%. Thus, it is feasible to forecast the internal explosion effect of the original structure size model by using the experiment results of the scale model with scaling coefficient λ≥0.1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.