Abstract

A highly challenging question in neuroscience is to understand how aminergic neural circuits contribute to the planning and execution of behaviors, including the generation of olfactory memories. In this regard, electrophysiological techniques like Local Field Potential or imaging methods have been used to answer questions relevant to cell and circuit physiology in different animal models, such as the fly Drosophila melanogaster. However, these techniques do not provide information on the neurochemical identity of the circuits of interest. Different approaches including fast scan cyclic voltammetry, allow researchers to identify and quantify in a timely fashion the release of endogenous neuroactive molecules, but have been only used in in vitro Drosophila brain preparations. Here, we report a procedure to record for the first time the release of endogenous amines -dopamine, serotonin and octopamine- in adult fly brain in vivo, by fast scan cyclic voltammetry. As a proof of principle, we carried out recordings in the calyx region of the Mushroom Bodies, the brain area mainly associated to the generation of olfactory memories in flies. By using principal component regression in normalized training sets for in vivo recordings, we detect an increase in octopamine and serotonin levels in response to electric shock and olfactory cues respectively. This new approach allows the study of dynamic changes in amine neurotransmission that underlie complex behaviors in Drosophila and shed new light on the contribution of these amines to olfactory processing in this animal model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.