Abstract

The handling of positive electrode active materials must be done carefully due to their propensity to degrade when exposed to ambient atmosphere. The growth of impurities on Ni-rich layered lithium transition metal oxides (LTMOs) is particularly concerning as these materials readily react with H2O and CO2 in atmosphere. The resulting surface impurity species have detrimental effects on the performance of the Li-ion cell and are commonly removed by washing the positive electrode active materials. However, little is understood about the reaction between these materials and aqueous solutions. In this study, LTMOs samples were exposed to acidic and neutral aqueous solutions for various periods of time. The resulting material samples were analysed by X-ray powder diffraction (XRD), thermogravimetric analysis coupled with mass spectrometry (TGA-MS), and by scanning electron microscopy (SEM). The solutions collected after washing were analysed by pH titration and inductively coupled plasma optical emission spectrometry (ICP-OES). From this, we propose two pH-dependent regimes that define the reaction between the positive electrode material and the aqueous solution used for washing. Possible consequences of these reactions on cell performance and lifetime are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.