Abstract

A non-linear dynamic mathematical model of voltage transformer has been considered and overvoltages arising on the elements of voltage transformer equivalent circuit during transient processes have been investigated. The influence of voltage transformer secondary circuit capacitance on overvoltage multiplicity in the primary circuits and the duration of transients has been determined. The advantages of approximation of nonlinearity of voltage transformers by hyperbolic sine are used. Mathematical expressions determining the nature of changes in the forced and free components of the transient process in an electrical network with a voltage transformer have been obtained. It is shown that with the increase of the electric network capacitance the duration of the transition process damping increases and the frequency of the forced oscillations and the level of overvoltage decrease. It is proved that even small, in comparison with the primary nominal sinusoidal voltage, aperiodic components of the voltage transient process can lead to significant overvoltages during voltage transformer outages. It has been substantiated that both the secondary resistance and the switching torque influence the overvoltage multiplicity arising in the primary winding of voltage transformers. It is shown that the closed secondary winding worsens the disconnection process of non-linear inductance of voltage transformers. The values to which overvoltages increase in this case are determined. According to the results of calculations it is determined that with open secondary winding of voltage transformers the duration of transient process significantly increases. It has been found that the decrease of frequency of forced oscillations, which occurs in this case, is accompanied by an increase of currents in the primary winding of the voltage transformer, which is dangerous in terms of thermal stability of the winding insulation. It is shown, that closing the secondary winding of voltage transformers leads to significant reduction of transient damping time. It is suggested that this algorithm can be used to provide a rapid breakdown (suppression) of ferroresonant processes. The effectiveness of such a measure of stopping of ferroresonance processes as short-term shunting of secondary winding of voltage transformers has been investigated. The correlation of parameters of electric networks (capacity of busbar sections, nonlinearity of characteristics of voltage transformers, disconnection torque, etc.) at which ferroresonance process may occur and consideration of which may allow, in terms of prevention of ferroresonance processes, to identify substations (electric networks) that require more detailed research has been determined. The results of analytical studies were tested in the electric networks of JSC "Kharkivoblenergo" and used in the electricity distribution system for the selection of specific voltage transformers for certain configurations of electrical networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.