Abstract

At four different strain rates, the tensile stress strain relationship of single-walled 12-12 CNT with aspect ratio 9.1 obtained by Rebo potential (Brenner, 1990), Airebo potential (Stuart et al., 2000), and Tersoff potential (Tersoff, 1988) is compared with that of Belytschko et al. (2002) to validate the present model. Five different empirical potentials such as Rebo potential (Brenner, 1990), Rebo potential (Brenner et al., 2002), Inclusion LJ with Rebo potential (Brenner, 1990), Airebo potential (Stuart et al., 2000), and Tersoff potential (Tersoff, 1988) are used to simulate CNT subjected to axial tension differing its geometry at high strain rate. In Rebo potential (Mashreghi and Moshksar, 2010) only bond-order term is used and in Rebo potential (Brenner et al., 2002) torsional term is included with the bond-order term. At high strain rate the obtained stress strain relationships of CNTs subjected to axial tension differing its geometries using five different potentials are compared with the published results and from the comparison of the results, the drawback of the published results and limitations of different potentials are evaluated and the appropriate potential is selected which is the best among all other potentials to study the elastic, elastic-plastic properties of different types of CNTs. The present study will help a new direction to get reliable elastic, elastic-plastic properties of CNTs at different strain rates. Effects of long range Van der Waals interaction and torsion affect the elastic, elastic-plastic properties of CNTs and why these two effects are really needed to consider in bond-order Rebo potential (Brenner, 1990) to get reliable elastic, elastic-plastic properties of CNTs is also discussed. Effects of length-to-diameter ratio, layering of CNTs, and different empirical potentials on the elastic, elastic-plastic properties of CNTs are discussed in graphical and tabular forms with published results as a comparative manner to understand the nanomechanics of CNTs under tension using molecular dynamics simulation.

Highlights

  • A variety of new intriguing materials have been discovered and synthesized in the last two decades which have caused phenomenal change in the area of materials science and among them one is the class of carbon compounds referred to fullerene nanotubes

  • We simulate carbon nanotubes (CNTs) subjected to an axial tension at their both ends using five different potentials such as Tersoff potential [10], Rebo potential [11], Rebo potential [31], Inclusion LJ with Rebo potential [11], and Airebo potential [29] to study the effect of potentials on their elastic, elastic-plastic properties

  • We obtain per atom potential energy of a single-walled 12-12 CNT as a function of axial strain at a very low strain rate using three different potentials such as Airebo potential [29], Rebo potential [11], and Tersoff potential [10] to understand the effect of Van der Waals interaction and torsional effects on bondorder potential whose effects are reflected in the elastic, elastic-plastic properties of CNTs

Read more

Summary

Introduction

A variety of new intriguing materials have been discovered and synthesized in the last two decades which have caused phenomenal change in the area of materials science and among them one is the class of carbon compounds referred to fullerene nanotubes. Carbon nanotubes can be made of as rolling up sheets of graphite that are sometimes crapped on each end, with structures that vary depending on the conditions under which they are synthesized. They are singlewalled [1, 2] with diameters as small as about 1 nm or multiwalled [3, 4] with outer diameters ranging from 5 to 350 nm. Yakobson et al [9] studied the behavior of CNTs under a high strain rate using Tersoff-Brenner’s reactive empirical bond-order (REBO) potential [10, 11]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.