Abstract

Nonlocal elasticity models in continuum mechanics can be treated with two different approaches: the gradient elasticity models (weak nonlocality) and the integral nonlocal models (strong nonlocality). This paper focuses on the fractional generalization of gradient elasticity that allows us to describe a weak nonlocality of power-law type. We suggest a lattice model with spatial dispersion of power-law type as a microscopic model of fractional gradient elastic continuum. We demonstrate how the continuum limit transforms the equations for lattice with this spatial dispersion into the continuum equations with fractional Laplacians in Riesz's form. A weak nonlocality of power-law type in the nonlocal elasticity theory is derived from the fractional weak spatial dispersion in the lattice model. The continuum equations with derivatives of noninteger orders, which are obtained from the lattice model, can be considered as a fractional generalization of the gradient elasticity. These equations of fractional elasticity are solved for some special cases: subgradient elasticity and supergradient elasticity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.