Abstract

The n− region is crucial to the performance of n-on-p HgCdTe devices. However, the underlying mechanisms governing its formation process remain insufficiently elucidated in current literature. In this work, the influence of annealing temperature on the n− region formation process was investigated systematically through experiments and one-dimensional (1D) simulation. The two key parameters, the transport rate of interstitials (TrI) and the diffusion coefficient of vacancies (DV) were determined through the 1D model, and their accuracy was validated by experiments. The determination of TrI and DV allows for more flexible and precise optimization of the n− region in HgCdTe, thereby providing valuable guidance for cost-effective, high performance, and reliable preparation of HgCdTe detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.