Abstract
Alpha titanium (α-Ti) is a promising material for making high-performance components for applications in aerospace, marine, energy and healthcare fields. The excellent strength-ductility synergy has been observed for α-Ti at cryogenic temperature. Twinning is generally considered a key mechanism of outstanding cryogenic ductility. The dislocation-grain boundaries (GBs) interaction and void nucleation usually play crucial roles in the plastic deformation of polycrystalline materials, but their effects on the cryogenic ductility of α-Ti are rarely considered. To eliminate this confusion and gain an in-depth insight into the mechanism of the cryogenic strength-ductility synergy of α-Ti, in this work, a series of characterization experiments and molecular dynamics (MD) simulations were designed and carried out. 1) From uniaxial tension tests of the coarse-grained α-Ti sheets at the temperature from 25 to -180 °C, the uniform elongation and post-necking elongation were increased by 92 % and 20 %, respectively. The material maintained a larger strain hardening rate within a greater range of strain at cryogenic temperature compared with room temperature. 2) Via microstructure and fractography observations and the analysis of slip and geometrically necessary dislocation (GND) activities, the uniform plastic deformation was mainly accomplished by prismatic slip, whether at room temperature or at cryogenic temperature. The significantly increased uniform elongation is mainly attributed to the more uniform distribution of GND pile-ups at cryogenic temperature. 3) The MD simulations revealed that cryogenic temperatures made the GBs present a stronger barrier effect on dislocation transmission compared with that at room temperature, contributing to the more uniform distribution of GNDs and lower densities of GND pile-ups. The GBs at cryogenic temperature show a greater ability to resist void nucleation due to the decreased accumulation rate of excess potential energy and increased energy required to void nucleation. The larger strains were thus required to increase the densities of GND pile-ups to induce large stress concentrations for driving void nucleation. This made the uniform elongation of α-Ti increase significantly at cryogenic temperature. This study revealed that the enhanced barrier effect of GBs on dislocation transmission and the improved ability of GBs to resist void nucleation are key mechanisms besides twinning governing the cryogenic strength-ductility synergy of α-Ti. The understanding developed in this work can be useful for the development of new high-performance materials and the precise forming of complex components with high quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.