Abstract
Nuclear magnetic resonance can only quantitatively obtain porosity and pore size distribution, but as a conventional microstructure observation technology, scanning electron microscope (SEM) can select different magnifications to observe the microstructure of backfill materials. However, the processing of SEM images is not deep enough. In this paper, Image-Pro Plus 6.0 software was used to extract the data from SEM images, and the parameters of the area, and the perimeter, aspect ratio and roundness of the pores in the SEM images were obtained. The fractal characteristics of the pores in the SEM image were obtained by using the slit island method fractal theory. The concretization and quantification analysis of the pores’ complexity were achieved. A functional relationship model for the strength and pore parameters was constructed; thus, the influence law of pore characteristics on strength was quantitatively analyzed. The conclusions included: (1) Pore parameters indicate that most pores in backfill are irregular, and only a few pores are regular—however, the whole structure has good fractal characteristics (R2 > 0.96). (2) The fractal dimension of pores is directly proportional to the roundness, the aspect ratio, and the pore content of pores—which indicates that the complexity of pores is related to both pore shape and pore content. (3) The strength had a linear inverse relationship with the roundness, aspect ratio, pore content, and fractal dimension—which indicates that all characteristics of pores have a certain influence on the strength.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have