Abstract

The intramolecular nucleophilic substitution of an activated phosphate diester, bis(p-nitrophenyl) phosphate (BNPP) as the nucleic acids substitute, was investigated. A macro-cyclic ligand and the corresponding Cu (II) and Ni (II) complexes were synthesized and characterized. The metallomicelles made up of macrocyclic divalent metal complex and micelle, as mimic hydrolytic metalloenzyme, was used in BNPP catalytic hydrolysis. The metallomicelles displayed higher catalytic activity although they do not attain the catalytic efficiency of enzymes. The analysis of specific absorption spectra showed that the course of the BNPP catalytic reaction was different from that of the BNPP spontaneous hydrolysis, and was an intramolecular nucleophilic substitution reaction. Based on the analytic result of the specific absorption spectrum, an intramolecular nucleophilic substitution mechanism of BNPP catalytic hydrolysis was proposed and a correlative kinetic mathematical model was established, and the corresponding thermodynamic and kinetic constant was calculated. The result of this study proved validity of the mechanism and mathematical model proposed in the article.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.