Abstract

The article outlines findings from a comparative analysis of the effectiveness of doping CeO2 ceramics with a stabilizing additive Y2O3 on alterations in the strength and thermophysical parameters of ceramics under high-temperature irradiation with heavy ions comparable in energy to fission fragments of nuclear fuel, which allows, during high-temperature irradiation, to simulate radiation damage that is as similar as possible to the fission processes of nuclear fuel. During the studies, it was found that the addition of a stabilizing additive Y2O3 to the composition of CeO2 ceramics in the case of high-temperature irradiation causes an increase in stability to swelling and softening because of a decrease in the thermal expansion of the crystal lattice by 3–8 times in comparison with unstabilized CeO2 ceramics. It has been determined that the addition of a stabilizing additive Y2O3 leads not only to a rise in the resistance of the crystal structure to deformation distortions and swelling, but also to a decrease in the effect of thermal expansion of the crystal structure, which has an adverse effect on the structural ordering of CeO2 ceramics exposed to irradiation at high temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call