Abstract

The objective of this work is based on the modeling and simulation of the Ga 1-x In x As 1-y N y /GaAs structure, for solar cell applications. Theoretical model was used to study the effects of the indium (In) incorporation and nitrogen (N) concentration in the GaInAsN material. In order to implement this idea, a simulation program was developed to determine the strain effect on the band energy by taking into consideration the influence of In < 25% and N < 4%. In this study we have used the Band Anti-Crossing (BAC) model. Indeed, the strain reduces the band gap energy, and the nitrogen incorporation splits the conduction band into two subbands E+ and E-. In the correct condition, we also treated the impact of indium and nitrogen concentrations on the absorption coefficient of the GaInAsN/GaAs structure. According to a particular sequence, the raise of these both materials concentrations In and N results in the increase of the absorption coefficient. This work allowed us to optimize the In and N concentrations to raise the efficiency η= 22%, with strain equal to 1.5% of the solar cell based on the GaInAsN/GaAs structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.