Abstract

In this work, the early degradation step of the pyrolysis of some polymers in the presence of certain catalysts has been studied using thermogravimetric analysis (TGA). Three commercial polymers (PE, PP and EVA) and three catalysts were studied (ZSM-5, MCM-41a, and MCM-41b), and the MCM-41a catalyst has been selected for the analysis of the earlier steps of the pyrolysis process carried out in the presence of catalysts. Several cycles of heating–cooling were performed using a thermobalance, in order to analyze the influence of the first stages of decomposition on the activity of the more accessible active sites involved. In this way, the behaviour of the polymer–catalyst mixtures (20% (w/w) of catalyst) was studied and compared with that observed in the corresponding thermal degradation as well as in the pyrolysis in the presence of catalysts, in a single heating cycle. The results obtained clearly show the existence of an early degradation step. For a polymer–catalyst system with low steric hindrances such as PE-MCM-41, this early degradation step causes a noticeable decrease of the catalyst activity for the main decomposition step (i.e., cracking of the chain). The decrease of the catalytic activity is lower for a polymer–catalyst system with higher steric restrictions, as occurs in the EVA-MCM-41 degradation process. However, in this case, the catalyst activity in the first decomposition step (i.e., the loss of the acetoxi groups) is noticeable decreased after one pyrolysis run, thus reflecting that the active sites involved are mainly the most accessible ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call