Abstract
Two configurations of carbon fiber/ultra-thin stainless-steel strip fiber metal laminates (CUSFML) with differing metal volume contents (35.3% and 18.2%) and carbon fiber-reinforced polymer (CFRP) composite laminates were selected for tests. The impact response and the effect of metal volume content on the impact resistance of CUSFML were assessed via experiment and FEM. Inducing damage by drop-weight test within the impact energy range of 18.60–46.23 J, two types of CUSFML and CFRP composite laminates were compared. In particular, the bearing capacity, impact deflection, failure modes, and energy dissipation were considered. The impact modeling using the VUMAT subroutine refines the relationship between energy-dissipating mechanism and damage evolution. The results indicate that CUSFML are characterized by higher impact resistance than CFRP composite laminates under low-velocity impact. The effect of metal volume content on the impact resistance increases gradually with impact energy increasing. Under 46.23 J impact, the CUSFML with higher metal volume content exhibits more concentrated damaged area with severe penetration failure, which is more dominated by metal failure features with a higher proportion of plastic energy dissipation. For CUSFML with lower metal volume content, extensive delamination and damage expansion occurs under the dominance of fiber damage behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.