Abstract

The production of ligninolytic enzymes by the fungus Phanerochaete chrysosporium in a fixed-bed tubular bioreactor, filled with cubes of nylon sponge, operating in semi-solid-state conditions, was studied. Maximum individual manganese-dependent peroxidase (MnP) and lignin peroxidase (LiP) activities of 1293 and 225 U/l were detected. The in vitro decolourisation of two structurally different dyes (Poly R-478, crystal violet) by the extracellular liquid obtained in the above-mentioned bioreactor was monitored in order to determine its degrading capability. The concentration of some compounds (sodium malonate, manganese sulphate) from the reaction mixture was optimised in order to maximise the decolourisation levels. A percentage of Poly R-478 decolourisation of 24% after 15 min of dye incubation was achieved. On the other hand, a methodology for a long treatment of these dyes based on the continuous addition of MnP enzyme and H 2O 2 was developed. Moreover, this enzymatic treatment was compared with a photochemical decolourisation process. The former allowed to maintain the degradation rate almost constant for a long time, resulting in a decolourisation percentage of 70% and 30% for crystal violet and Poly R-478, respectively, after 2 h of treatment. As for the latter, it was not able to degrade Poly R-478, whereas crystal violet reached a degradation of 40% in 2 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.