Abstract

In order to simulate dispersed multiphase flows, the coupling level must be determined according to the volume fraction in the system. The volume fraction is the ratio of the total volume of the dispersed phases over the total volume of the flow. In dilute flows, with volume fractions smaller than 10-6, only the influence of carrier phase over the dispersed phase is considered which is known as one-way coupling. Nonetheless, in dispersed flows with higher volume fractions, the effect of the dispersed phase over the continuous one should be taken into consideration, known as two-way coupling. This effect normally is applied as a source term in the conservation equations of the carrier phase. Depending on the numerical method and the discrete operators employed, these source terms can lead to some issues when aiming to preserve physical properties like mass, momentum and energy. Moreover, in order to validate the two-way coupling method, a particle-laden turbulent flow benchmark case with a mass loading of 22% is simulated by means of large eddy numerical simulation (LES). The aim of this work is to study the conservation properties of dispersed multiphase flows like momentum, kinetic energy and thermal energy through two-way coupling between dispersed and continuous phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.