Abstract

A sinusoidal surface roughness model is adopted for the analysis of the effects of roughness amplitude and wavelength on pressure profile, film shape, minimum film thickness and coefficient of friction in a steady state EHL line contact. The influence coefficients used for the evaluation of surface displacements are calculated by utilizing a numerical method based on Fast Fourier Transform. Significant reduction is observed in the minimum film thickness due to surface roughness. Such reduction is quantified by roughness correction factor, C R, and a relationship between C R and non-dimensional surface roughness amplitude A is derived as: C R=1−0.7823 A 0.8213. This equation may prove to be of interest from designer's viewpoint. The friction coefficient is found to increase appreciably with increasing amplitude and decreasing wavelength of surface roughness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.