Abstract

This paper presents the effect of surface roughness on soft elastohydrodynamic lubrication in circular contact with non-Newtonian lubricant. The time independent modified Reynolds equation, elastic equation and lubricant viscosity equation were formulated for compressible fluid. Perturbation method, Newton-Raphson method, finite different method and full adaptive multigrid method were implemented to obtain the film pressure, film thickness profiles and friction coefficient in the contact region at various the amplitude of surface roughness, surface speed of sphere, modulus of elasticity and radius of sphere. The simulation results showed that the film thickness in contact region depended on the profile of surface roughness. The minimum film thickness decreased but maximum film pressure and friction coefficient increase when the amplitude of surface roughness and modulus of elasticity increased. For increasing surface speeds, the minimum film thickness and friction coefficient increase but maximum film pressure decreases. When radius of sphere increases, the minimum film thickness increases but maximum film pressure and friction coefficient decrease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.