Abstract
Abstract This research investigated the structural growth of multiwalled carbon nanotubes (MWCNTs) in a double stage horizontal chemical vapor deposition (CVD) reactor. Ethylene was used as a carbon source for nucleation of nanotubes. Ferrocene catalyst weight was varied from 0.1 to 0.2 g to demonstrate the growth of MWCNTs on Si/SiO2/Al2O3 substrate. The obtained data revealed that the weight of the catalyst significantly affects the diameter, crystallinity, alignment and yield of the nanotubes. Lower inner-shell spacing and the ratio of D-Raman peak intensity and G-Raman peak intensity (ID/IG ratio) were obtained with 0.15 g of ferrocene, which was an indication of relatively pure carbon nanotubes (CNTs) growth. Raman spectra also confirmed the highly crystalline and relatively pure CNTs structures with ID/IG ratio of 0.700. TGA data revealed the formation of 97% pure nanotubes with oxidation temperature of 620°C. However, above and below the optimum (0.15 g of ferrocene), some of the grown CNTs were found defective and few black spots were also seen in TEM micrographs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.