Abstract

Fe-based amorphous coatings with a composition of Fe 49.7Cr 18Mn 1.9Mo 7.4W 1.6B 15.2C 3.8Si 2.4 have been prepared on a mild steel substrate by High velocity air fuel (HVAF) and High velocity oxygen fuel (HVOF) processes. The microstructure and corrosion resistance in 3.5 wt.% NaCl solution of the coatings prepared by the two processes were comparatively studied. It was found that the two coatings exhibit dense structure with the porosity of 0.4% and compact bonding with the substrate. However, HVOF coating contains higher oxygen content than HVAF coating, resulting from the formation of significant oxide contours between the partially melted particles in HVOF process. Electrochemical polarization tests and electrochemical impedance spectroscopy (EIS) analysis indicate that the HVAF coating has better corrosion resistance than the HVOF coating. The preferential corrosion along the oxide contours thus providing efficient diffusion channels for electrolyte accounts for the poor corrosion resistance in HVOF coating. The present results demonstrate that HVAF with less cost can be a promising spray process to fabricate the Fe-based amorphous coating for industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call