Abstract

The microstructure and micromechanical behavior of thermally sprayed Fe-based coatings manufactured with high-velocity oxygen fuel (HVOF) and high-velocity air fuel (HVAF) processes were investigated. Fe-Cr-Ni-Si-B-C and Fe-Cr-Ni-Mo-Si-B-C powders were used as the feedstock materials. The coatings showed a highly dense microstructure with near-zero oxidation. The microstructure of the feedstock powders was better retained when sprayed with HVAF process. Differential scanning calorimetry revealed two small exothermic peaks at about 600 °C for the HVOF-sprayed coatings, without any increase in weight in thermogravimetric analysis. It suggested the re-precipitation of carbides that were dissolved during spraying due to the higher particle temperature reported by spray diagnostics system during the HVOF process (≈1800 °C) compared to the HVAF one (≈1400 °C). Micro- and nano-indentations helped to show the difference in inter-lamellar cohesive strength and, in turn, in the particle deposition mechanism. Coatings sprayed with Fe-Cr-Ni-Mo-Si-B-C composition possessed higher sliding wear resistance than that of Fe-Cr-Ni-Si-B-C due to higher nano-hardness. More specifically, HVOF-sprayed Fe-Cr-Ni-Mo-Si-B-C coating showed the largest intra-lamellar hardness, the largest elasticity, and high quality of particle interfaces which resulted in lower sliding wear rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.