Abstract

Annealing study of nickel metal in the temperature range 300–1000 K has been carried out using molecular dynamics (MD) simulations. The simulation is done for models containing 104 particles Ni at both crystalline and amorphous states. We obtain the change as a function of annealing time for the potential energy of system, pair radial distribution function (PRDF), and distribution of coordination number (DCN). The calculation shows that the aging slightly reduces the potential energy of system. This result evidences that the amorphous model undergoes different quasiequilibrated states during annealing. The crystalline model undergoes the slow relaxation which reduces the energy of system and eliminates structural defects in crystal lattices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.