Abstract

We theoretically study the homolytic dissociation reactions of sterically crowded alkanes of increasing size, carrying three different (bulky) substituents such as tert-butyl, adamantane, and [1.1.1]propellanyl, employing a family of parameter-free functionals ranging from semi-local, to hybrid and double-hybrid models. The study is complemented with the interaction between a pair of HC(CH3)3 molecules at repulsive and attractive regions, as an example of a system composed by a pair of weakly bound sterically crowded alkanes. We also assessed the effect of incorporating reliable dispersion corrections (i.e., D4 or NL) for all the functionals assessed, as well as the use of a tailored basis set (DH-SVPD) for non-covalent interactions, which provides the best trade-off between accuracy and computational cost for a seemingly extended applications to branched or crowded systems. Overall, the PBE-QIDH/DH-SVPD and r2SCAN-QIDH/DH-SVPD methods represent an excellent compromise providing relatively low, and thus very competitive, errors at a fraction of the cost of other quantum-chemical methods in use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.