Abstract

A non-quarterwavelength optical design (design wavelength, λo = 1,054 nm) based antireflection (AR) coating was prepared by sol–gel spin coating technique. Two materials, zirconia and silica were chosen for the deposition of AR layers on borosilicate crown glass, refractive index (R. I. = 1.51). For this design, the bottom and middle layers were of zirconia with the R. I. range 1.941–1.958 while the top layer was of silica with R. I. 1.455. To understand the surface feature after each deposition, refractive index and physical thickness of the layers were measured ellipsometrically (λ = 632.8 nm) at different points over the area, 10 mm × 10 mm with an interval of 0.5 mm along the centre based perpendicular projection made on an imaginary chord. The surface feature was examined by plotting the measured values of the optical parameters against the displacement. The surface roughness decreased with increasing layers. This was verified by the study of AFM images of the layers. Specular reflection of the antireflection coated product at λ0 was comparable to that of the theoretically simulated curve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call