Abstract

In this work, Macro-Reversible addition fragmentation termination (RAFT) agents based on poly(ethylene glycol) (PEG) possessing different molecular weights and bearing benzoyl xanthate moieties were synthesized by the reaction of PEG potassium xanthate salts with benzoyl chloride, 4-methyl benzoyl chloride and 4-chloro benzoyl chloride. Controlled free radical polymerization of the styrene were carried out in the presence of these macro-RAFT agents using 2,2′-azobisizsobutyronitrile (AIBN) as an initiator to yield PS-b-PEG-b-PS block copolymers. The linear kinetic plot ln [M]o/[M] vs. polymerization time indicated that was first order with reference to monomer concentration. The block copolymerization possessed controlled/living character. The controlled character of the RAFT polymerization of the styrene was confirmed by the formation of narrow polydispersity of the polymers, linear increases in the molecular weight with polymerization time and molecular weight of the products that agreed well with theoretical values. Polymers having relatively narrow molecular weight distributions and predetermined number average molecular weights were obtained by the RAFT polymerization of the styrene. However, molecular weights of the polymers deviated from the theoretical values when low molecular weight RAFT agents are used. The results indicate that PEG benzoyl xanthate RAFT agents can more efficiently control the polymerization comparing methyl or chlorobenzoyl derivatives. The block copolymers were characterized by spectroscopic and GPC methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call