Abstract

Systematic investigations are carried out on the synthesis of a series of new, unique ABA-type triblock copolymers consisting of the hydrophobic and chemically inert polyisobutylene (PIB) inner and the hydrophilic comb-shaped poly(poly(ethylene glycol) methacrylate) (PPEGMA) polymacromonomer as an outer block. Telechelic PIB macroinitiators with narrow molecular weight distributions (MWD) are synthesized by quasiliving carbocationic polymerization of isobutylene with a bifunctional initiator followed by quantitative chain end derivatizations. Atom transfer radical polymerization (ATRP) of PEGMAs with various molecular weights is investigated by using these macroinitiators. It is found that CuBr is an inefficient ATRP catalyst, while CuCl leads to high, nearly complete conversions of the PEGMA macromonomers. Gel permeation chromatography (GPC) analyses reveal slow initiation of PEGMA at relatively high PIB/PEGMA ratios or with PEGMAs of higher molecular weights due to steric hindrance between the macroinitiator and macromonomer. The occurrence of slow initiation, and not permanent termination, is proven by highly efficient ATRP of a low-molecular-weight monomer, methyl methacrylate, with the block copolymers as macroinitiators. Successful synthesis of PPEGMA-PIB-PPEGMA ABA block copolymers is obtained by using either low-molecular-weight PEGMA or relatively low macroinitiator/macromonomer ratios. Differential scanning calorimetry (DSC) indicates phase separation and significant suppression of the crystallinity of the pendant poly(ethylene glycol) (PEG) chains in these new block copolymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.