Abstract

The theoretical calculations have predicted that nonmetal-doped potassium clusters can be used in the synthesis of a new class of charge-transfer salts which can be considered as potential building blocks for the assembly of novel nanostructured material. In this work, K(n)Cl (n = 2-6) and K(n)Cl(n-1) (n = 3 and 4) clusters were produced by vaporization of a solid potassium chloride salt in a thermal ionization mass spectrometry. The ionization energies (IEs) were measured, and found to be 3.64 ± 0.20 eV for K(2)Cl, 3.67 ± 0.20 eV for K(3)Cl, 3.62 ± 0.20 eV for K(4)Cl, 3.57 ± 0.20 eV for K(5)Cl, 3.69 ± 0.20 eV for K(6)Cl, 3.71 ± 0.20 eV for K(3)Cl(2) and 3.72 ± 0.20 eV for K(4)Cl(3). The K(n)Cl(+) (n = 3-6) clusters were detected for the first time in a cluster beam generated by the thermal ionization source of modified design. Also, this work is the first to report experimentally obtained values of IEs for K(n)Cl(+) (n = 3-6) and K(n)Cl(n-1) (+) (n = 3 and 4) clusters. The ionization energies for K(n)Cl(+) and K(n)Cl(n-1) (+) clusters are much lower than the 4.34 eV of the potassium atom; hence, these clusters should be classified as 'superalkali' species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call