Abstract

Clusters of the type Li(n)X (X = halides) can be considered as potential building blocks of cluster-assembly materials. In this work, Li(n)Br (n = 2-7) clusters were obtained by a thermal ionization source of modified design and selected by a magnetic sector mass spectrometer. Positive ions of the Li(n)Br (n = 4-7) cluster were detected for the first time. The order of ion intensities was Li(2)Br(+) > Li(4)Br(+) > Li(5)Br(+) > Li(6)Br(+) > Li(3)Br(+). The ionization energies (IEs) were measured and found to be 3.95 ± 0.20 eV for Li(2)Br, 3.92 ± 0.20 eV for Li(3)Br, 3.93 ± 0.20 eV for Li(4)Br, 4.08 ± 0.20 eV for Li(5)Br, 4.14 ± 0.20 eV for Li(6)Br and 4.19 ± 0.20 eV for Li(7)Br. All of these clusters have a much lower ionization potential than that of the lithium atom, so they belong to the superalkali class. The IEs of Li(n)Br (n = 2-4) are slightly lower than those in the corresponding small Li(n) or Li(n)H clusters, whereas the IEs of Li(n)Br are very similar to those of Li(n) or Li(n)H for n = 5 and 6. The thermal ionization source of modified design is an important means for simultaneously obtaining and measuring the IEs of Li(n)Br (n = 2-7) clusters (because their ions are hermodynamically stable with respect to the loss of lithium atoms in the gas phase) and increasingly contributes toward the development of clusters for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.