Abstract

ptical cross-talk is a critical characteristic of Silicon Photomultipliers (SiPMs) and represents a significant source of the excess noise factor, exerting a substantial influence on detector performance. During the avalanche process of SiPMs, photons generated can give rise to both internal cross-talk within the same SiPM and external cross-talk when photons escape from one SiPM and trigger avalanches in others. In scenarios where SiPMs are arranged in a compact configuration and positioned facing each other, the external cross-talk could even dominate the cross-talk phenomenon. This paper investigates two distinct methods for measuring external cross-talk: the counting method, which involves operating SiPMs face-to-face and measuring their coincident signals, and the reflection method, which employs a highly reflective film attached to the surface of the SiPMs. External cross-talk measurements have been conducted on several types of SiPMs, including Vacuum Ultra-Violet (VUV) sensitive SiPMs that Fondazione Bruno Kessler (FBK) and Hamamatsu Photonics Inc (HPK) produced for nEXO as well as visible-sensitive SiPMs provided by FBK, HPK and SensL Technologies Ltd (SenSL) for JUNO-TAO. The results reveal a significant presence of external cross-talk in all tested SiPMs, with HPK's SiPMs exhibiting a dominant external cross-talk component due to the implementation of optical trenches that effectively suppress internal cross-talk. Furthermore, we found that the number of fired SPADs resulting from internal cross-talk can be described by combining Geometric and Borel models for all tested SiPMs, while the external cross-talk can be predicted using a pure Borel model. These distinct probability distributions lead to different excess noise factors, thereby impacting the detector performance in varying ways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.