Abstract
At present synchrotron and neutron sources are the preferred choices for the Pair Distribution Function (PDF) analysis, but there is a need to explore PDF in a laboratory XRD system for quick feedback about the short range structure of the amorphous materials. Present work considered both crystalline (quartz) and amorphous silica to study the structural differences in silica by PDF analysis using Ag radiations in laboratory XRD. The structural information about short range ordering of the oxygen (O) atoms around silicon (Si) atoms as obtained by the PDF were compared with the results as obtained by Near Edge X-ray Absorption Fine Structure (NEXAFS) and RAMAN experiments. The PDF studies showed that the amorphous silica possessed short range periodicity within the basic unit of (SiO4)4− tetrahedra with a SiO & OO distance are of about 1.622 Å and 2.713 Å while the short range as well as long range ordered structure present in quartz with SiO & OO distance are 1.562 Å and 2.661 Å respectively. Raman spectra showed some asymmetry in amorphous silica which corresponds to the defects present in the lattice and thus forming the n-fold ring structure with Si and O resulting in the wide variation of bridging bond angle SiOSi in amorphous silica. NEXAFS studies revealed the structure of amorphous silica and quartz in the intermediate range (3–5 Å) at the Si L and O K edges. The structural information about short range ordering of the O around Si atoms as obtained by these methods were found to be in good match with the results as obtained by PDF, suggesting this technique may be used as a screening tool for routine PDF studies of amorphous materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.