Abstract

Heavy-fuel aviation piston engines (HF-APEs) are widely used in general aviation and unmanned aerial vehicle (UAV) due to their safety and fuel economy. This paper describes a numerical and experimental study of scavenging and combustion processes on a 2-Stroke Direct Injected HF-APEs for light aircraft, with its cylinder specifically designed as cross scavenging. A 3-Dimentional transient model of in-cylinder flow and combustion process is established by the Forte platform, and the engine test system is set up. By comparing the simulation results to the experimental results, it showed that multi-ports cross scavenging can generate unbalanced aerodynamic torque in the cylinder. In the compression process, the swirl ratio (SR) gradually increases, and the peak SR reaches 15. Moreover, approximately 25% of exhaust residual gas in the cylinder is conducive to the fuel atomization and evaporation process in a high-altitude environment. When the injection timing is between −8 °CA and −16 °CA, the engine has the optimal power and economy performance at different altitudes. Finally, when the injection advance angle moves forward by 4 °CA, the maximum pressure increases by 2 MPa, with the rising rate decreasing gradually. The results have important significance for the development of the combustion system of small 2-Stroke Direct Injected HF-APEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call